The generator matrix

 1  0  0  1  1  1  X  1  1  X  1  0  0  1  1  1  0  1  1  0  1  1  0  0  1  1  0  0  X  X  X  X  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  0  1  1  1  1  1  0  1  0  1  1  1  X  1  X  1  X  0  1  X  X
 0  1  0  0  1 X+1  1  0  1  1 X+1  1  0  0  X X+1  1  X X+1  1  X  1  1  X  X  1  1  X  1  1  1  1  X  X  X  X X+1 X+1 X+1 X+1  0  1  X X+1  0  1  X X+1  0  0  0  0  0 X+1  0 X+1  1  1  1  1  0  1  X X+1  X  0 X+1  0  X  1  0  0  X  1  X  1  1  1  X  X  1  1 X+1  0  0 X+1  1  0
 0  0  1  1  1  0  1  X X+1 X+1  X  X  1 X+1  X X+1 X+1  0  1  1  1  X  0  1 X+1  0  X  1  1 X+1  1 X+1  1  1 X+1 X+1  0  0  X  X  0  1  0  1  X X+1  X X+1 X+1 X+1  1  1  0 X+1  X  1  X  X  0  0  0  1  0  1  1  X  0  1 X+1 X+1  1 X+1  X  0  0  X  1  X  X  X X+1  X X+1  1  1  X  0  1
 0  0  0  X  0  0  0  0  0  0  0  0  0  X  X  X  X  X  X  X  0  X  X  X  0  X  X  X  X  X  0  0  0  X  X  0  0  X  X  0  0  X  0  X  0  X  0  X  0  X  X  0  X  0  X  0  0  X  X  0  X  0  X  0  X  X  X  X  X  0  0  0  X  X  0  X  X  0  0  0  X  0  0  0  X  X  0  0
 0  0  0  0  X  X  0  X  0  X  0  X  X  X  X  0  0  0  X  X  0  0  0  0  X  X  X  X  X  0  X  0  X  0  X  0  0  X  0  X  X  X  0  0  0  0  X  X  X  0  X  0  X  X  0  0  0  X  0  X  0  0  X  X  X  X  0  0  0  X  X  0  0  X  X  0  0  X  0  X  X  0  0  0  X  X  X  X

generates a code of length 88 over Z2[X]/(X^2) who�s minimum homogenous weight is 85.

Homogenous weight enumerator: w(x)=1x^0+36x^85+28x^86+64x^87+60x^88+32x^90+24x^93+3x^94+3x^96+4x^101+1x^126

The gray image is a linear code over GF(2) with n=176, k=8 and d=85.
This code was found by Heurico 1.16 in 63.6 seconds.